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Abstract

We study the efficient solution of non-equilibrium radiation diffusion problems. An implicit time discretization leads

to the solution of systems of non-linear equations which couple radiation energy and material temperature. We consider

the implicit Euler method, the mid-point scheme, the two-step backward differentiation formula, and a two-stage impli-

cit Runge–Kutta method for time discretization.

We employ a Newton–Krylov method in the solution of arising non-linear problems. We describe the computation

of the Jacobian matrix for Newton�s method using automatic differentiation based on the operator overloading in For-

tran 90. For GMRES iterations, we propose a simple multigrid preconditioner applied directly to the coupled linearized

problems.

We demonstrate the efficiency and scalability of the proposed solution procedure by solving one-dimensional and

two-dimensional model problems.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The solution of non-equilibrium radiation diffusion problems is considered. This problem is described by

a highly non-linear system of parabolic partial differential equations for radiation energy and material tem-
perature [1]. Traditionally the time integration of this system has been performed using explicit, semi-

implicit or operator splitting schemes. During the recent years fully implicit time discretizations have
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2005.01.032

* Corresponding author. Tel.: +1 919 515 6545; fax: +1 919 515 1636.

E-mail addresses: roland@math.uh.edu (R. Glowinski), jatoivan@ncsu.edu (J. Toivanen).

mailto:roland@math.uh.edu
mailto:jatoivan@ncsu.edu 


R. Glowinski, J. Toivanen / Journal of Computational Physics 207 (2005) 354–374 355
become more common [2–14]. They offer much higher accuracy and they do not pose a time step limitation

due to a stability condition. On the other hand, they require the solution of a system of non-linear equa-

tions at each time step. The purpose of this paper is to study the efficient solution of these systems of non-

linear equations for simplified model problems [5].

The most common way to perform the spatial discretization has been to use finite volumes with the
quantities located at cell centers being the unknowns. Also, low order finite difference and finite element

discretizations have been employed. A more special non-conforming discretization was used in [9]. Typi-

cally the used grids and meshes have been uniform. In the following, we will use finite differences for nodal

values on uniform grids. In [10,12] adaptive mesh refinement strategies have been considered. Since typical

solutions have sharp thermal fronts, this gives an apparent way to improve the accuracy of the approxima-

tion without introducing excessive amount of new unknowns.

Among implicit temporal discretizations the implicit Euler, the Crank–Nicolson method, the mid-point

scheme and the backward differentiation formulas (BDFs) have been used for radiation diffusion problems.
In [3] a problem specific time step selection was introduced which is based on estimating the wave speed and

then using it to maintain a desired CFL number. The study [7] showed that the Crank–Nicolson method

yields accurate results even with a CFL number close to one while semi-implicit and implicit Euler methods

require much smaller CFL number to achieve the same accuracy. In [6] a generic ODE solver based on

variable order BDFs and variable time step sizes was employed. We will compare the implicit Euler, the

mid-point scheme, the two-step backward differentiation formula (BDF2) and a two-stage implicit

Runge–Kutta method. We employ the problem specific time step control from [3].

Newton�s method, inexact Newton�s methods, Picard iterations, and non-linear multigrid methods have
been employed to solve the system of non-linear equations arising at each implicit time step. The conver-

gence of Picard iterations were found out to be much slower than the convergence of Newton�s method in

[2,4]. A full approximation storage (FAS) multigrid was compared to Newton�s method in [8,10]. Both pa-

pers concluded that the convergence of both methods are similar but Newton�s method is computationally

much faster due to the repeated expensive evaluations of non-linear terms in the FAS multigrid. We will use

Newton�s method which is the most commonly used method for radiation diffusion problems and which

also seems to the most efficient method for these problems.

Newton�s method can be implemented in many different ways. The Jacobian matrix has to be formed or
approximated somehow. If the systems of linear equations with Jacobian matrices are solved with a Krylov

subspace method then it is only necessary to be able to multiply a vector by the Jacobian matrix. This can

be done using a finite difference approximation without forming the matrix; see [15] and references therein.

This approach has been used in [4,5], for example. Another possibility is to hand code the computation of

the Jacobian matrix like was done in [8], for example. This is often laborious and error prone to implement.

An alternative way to form the exact Jacobian is to compute it using automatic differentiation. We will em-

ploy this approach implemented using the operator overloading in Fortran 90.

Each iteration in Newton�s method, an inexact Newton�s method, or a Picard iteration requires the solu-
tion of a system of linear equations. Usually with radiation diffusion equations these problems are solved

using an iterative Krylov subspace method and, particularly, using the GMRES method [16]. Such a meth-

od is called a Newton–Krylov method [17] when it is combined with Newton�s method. The arising systems

of linear equations are not well conditioned mainly due to large variations in the diffusion coefficients and

small grid step sizes. It is advantageous to introduce a preconditioner which improves the conditioning and,

hence, the convergence of the iterative method. The study of preconditioners is the most active field of re-

search related to the solution of radiation diffusion problems. Most of them employ a multigrid method

[18–20] as a part of the preconditioner. For example, in [5] a preconditioner based on an operator splitting
was described and then a modification of it was considered in [11]. An effective Schur complement precon-

ditioner was introduced for non-equilibrium radiation diffusion problems without diffusion for the material

temperature in [6]. A multigrid method suitable for systems like the one in [21] can be used directly as a
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preconditioner. We will pursue this approach by describing a simple but still effective multigrid

preconditioner.

The outline of the paper is the following. We begin by considering Newton�s method and the automatic

differentiation for computation of the Jacobian matrices. Then, we describe a model non-equilibrium radi-

ation diffusion problem. The temporal and spatial discretizations are introduced in the next section. Then
the multigrid preconditioner is introduced for solving the arising systems of linear equations using a

preconditioned GMRES method. The next section gives numerical results for one-dimensional and two-

dimensional model problems. After some conclusions a short example of implementing automatic differen-

tiation using the operator overloading in Fortran 90 is shown in the appendix.
2. Newton�s method and automatic differentiation

We consider the solution of the system
BðEÞ ¼ 0 ð1Þ

of non-linear equations, where E is a vector and B is a non-linear vector-valued function. The implicit time

discretizations of non-linear partial differential equations lead to the solution of this kind of problems. For

our radiation diffusion model problems these non-linear equations are described in Section 4.1.

We use Newton�s method to solve Eq. (1). In the following, the superscript (j) in E denotes the iteration
number and Eð0Þ is the initial guess for the solution. In time-dependent problems the solution at the previ-

ous time step gives a natural initial guess. The (j + 1)th iterant in Newton�s method is given by
Eðjþ1Þ ¼ EðjÞ þFðjÞ; ð2Þ

where the vector FðjÞ is the solution of the system of linear equations
JðEðjÞÞFðjÞ ¼ �BðEðjÞÞ: ð3Þ

Here, JðEðjÞÞ is the Jacobian matrix of BðEðjÞÞ. In Section 5, we consider the efficient solution of (3) for the

radiation diffusion problems.
In principle, the computation of the Jacobian matrix is a mechanical and straightforward task, but in

practice it is laborious and error prone to code it. Thus, a typical approach is to approximate the Jacobian

matrix. In [2,5], the matrix multiplications by the Jacobian are approximated using finite differences leading

to efficient solution procedure for radiation diffusion problems.

Our approach is to compute the Jacobian matrix using automatic differentiation. We will use an ap-

proach based on an operator overloading technique available in modern programming languages like For-

tran 90 and C++ [22–24]. An alternative way would be to use a preprocessor, for example, ADIFOR [25],

which generates the necessary code for computing the desired derivatives. The basic idea is to form an new
data type for floating point numbers which also includes derivative information and, then, to redefine the

elementary operations and functions like addition, multiplication, exponential function, etc., for this new

data type so that they also compute desired derivatives using the chain rule of the differential calculus.

With operator overloading based automatic differentiation the code typically requires only a minor mod-

ification in order to compute the desired derivatives. In our case, we only modify the code computing the

residual vector BðEðjÞÞ in (1). In the following, we call independent variables the variables with respect to

which we want to compute the derivatives. Then the three required modifications for the code are: the type

of variables which depend directly or indirectly on independent variables are defined to be the new data
type, the independent variables are initialized and in the end, the derivative information is copied to its data

structures like into a matrix in our case. In Appendix A, we give a short example how the Jacobian can be

computed using Fortran 90 and automatic differentiation for one-dimensional equilibrium radiation
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diffusion problem. In the same manner, we have computed the Jacobians for all problems considered in

Section 6.

The cost of forming the Jacobian using the automatic differentiation depends how the residual vector is

computed. We analyze this cost under the assumption that the residual is evaluated component wise like in

Appendix A. For a more detailed analysis of computational cost and memory usage of the automatic dif-
ferentiation we refer to [22,23]. When computing the residual at a given grid point the unknowns appearing

in the finite difference stencil are declared as independent variables which means that the derivatives are

computed with respect to all of them. These derivatives of the residual then define the corresponding

row of the Jacobian. In Section 4.2, we describe nine-point finite difference stencils for both radiation

energy and material temperature for two-dimensional non-equilibrium radiation diffusion problems.

Furthermore, the equations for energy and temperature are coupled. Thus, we have 18 independent

variables.

Whenever we perform an arithmetical operation with variables which depend directly or indirectly on
the independent variables the overloaded operation compute also the derivatives of the result with respect

to all independent variables using the chain rule. Each arithmetical operation requires from one to five

additional operations to compute the derivative with respect to one independent variable. On average

one operation requires about two operations for each independent variables to compute the derivatives.

For example, with 18 independent variables one arithmetical operation can generate from 18 to 90 addi-

tional operations to compute the derivatives.

The actual CPU time required by the automatic differentiation depends on a great extent howwell the For-

tran 90 compiler can optimize the operator overloading code. Many contemporary compilers are not good in
this optimization and, thus, the operator overloading caries a heavy overhead, but still the increase in the

number of arithmetical operations can give a pessimistic estimate for the CPU time usage. A rough estimate

of CPU time usage is obtained by multiplying the running time by the number of independent variables.

One alternative way to form the Jacobian is to compute it row by row using finite differences. With this

approach for each row it is necessary to compute as many finite differences as there are points in the finite

difference stencil which is the same as the number of independent variables with the automatic differentia-

tion. Thus, the computational cost of this approach is comparable to the automatic differentiation.

By hand coding the analytical expressions for the Jacobian it is possible to reduce the cost compared to
the automatic differentiation. A large part of computations with the automatic differentiation are per-

formed with zeros, since many of the intermediate variables do not depend on all independent variables.

These arithmetical operations can be omitted when using the analytical Jacobian. Also the overhead asso-

ciated to the operator overloading can be avoided. Thus, an efficiently coded analytical Jacobian can be a

few times faster than the automatic differentiation.

With a Newton–Krylov method it is sufficient to be able to multiply vectors by the Jacobian. This prod-

uct can be approximated by using a finite difference approximation of the Jacobian; see [15] and references

therein. A forward finite difference gives an approximation
JðEÞF � 1

�
BðEþ �FÞ �BðEÞð Þ; ð4Þ
where � is a small positive number. Thus, the cost of a multiplication is about the same as the evaluation of

the residual BðEþ �FÞ when BðEÞ has been computed beforehand. One approximate multiplication (4) is

several times faster than forming the Jacobian. Furthermore, a considerable amount of memory is saved by
not storing the Jacobian. On the other hand, the multiplication of a vector by the stored Jacobian is several

times faster than the approximation (4). Therefore, we can expect that the use of (4) is faster when the num-

ber of Krylov iterations is small and the use of the stored Jacobian is faster when the number of Krylov

iterations is large. Some preconditioners like the multigrid preconditioner based on the Galerkin coarsening

in Section 5 require the Jacobian matrix.
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An advantage of the Jacobian computed using the automatic differentiation and the analytic Jacobian is

that their accuracy is usually comparable to the machine precision. Generally finite difference approxima-

tions are much less accurate and they require to choose a finite difference step size which has a strong im-

pact on accuracy. The typical accuracy of a first-order difference approximation is the square root of the

machine precision, that is, a half of the decimals are correct. With higher order finite differences accuracy
can be improved, but they are computationally much more expensive. The accuracy of the first-order dif-

ference approximation is sufficiently high for many problems. For example, for radiation diffusion prob-

lems they have been used with good success in [4,5].
3. Model problem

We consider the solution of the gray approximation for an idealized thermal non-equilibrium radiation
diffusion problem [5]. This is a coupled system for the radiation energy E and the material temperature T.

For our model problem, let X be one-dimensional or two-dimensional rectangular domain whose sides have

unit length, that is, X = (0,1)d, where d is the dimension of the problem.

The gray approximation for the radiation diffusion equation reads
oE
ot

�r � ðDrðT ;EÞrEÞ ¼ rðT ÞðT 4 � EÞ in X ð5Þ
and the material energy balance equation reads
oT
ot

�r � ðDtðT ÞrT Þ ¼ �rðT ÞðT 4 � EÞ in X: ð6Þ
In a thermal equilibrium the radiation energy and the material temperature are in the balance E = T4. In

this special case, the radiation energy can be obtained by solving Eq. (5) in which the right-hand side is zero.

We will not consider this special case here.

In (5) and (6), r(T) denotes the photon absorption cross-section given by
rðT Þ ¼ z3

T 3
; ð7Þ
where z is the atomic mass number of the medium which may vary from one point to another. The diffusion

coefficient for the radiation energy in (5) is
DrðT ;EÞ ¼
1

3rðT Þ þ jrEj=E ; ð8Þ
where the second term in the denominator is a flux limiter preventing the flux of energy to move faster than

the speed of light. Alternative flux limiters have been considered in [26] and references therein. The diffusion

coefficient for the material energy balance equation (6) is
DtðT Þ ¼ kT 5=2; ð9Þ

where k is a constant.

In the model problems considered in this article, there is a unit radiation flux on the left boundary of the

domain [2,5]. This corresponds to the Robin boundary condition
1

4
E � 1

6r
oE
ox1

¼ 1 on x1 ¼ 0: ð10Þ
On the right boundary, we pose the homogeneous Robin boundary condition
1

4
E � 1

6r
oE
ox1

¼ 0 on x1 ¼ 1: ð11Þ
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In the two-dimensional case, the solution is chosen to be symmetric (or insulated) over the lower and

upper boundaries, that is,
oE
ox2

¼ 0 on x2 ¼ 0 and x2 ¼ 1: ð12Þ
For the material temperature, we pose homogeneous Neumann boundary conditions on all boundaries,
that is,
oT
oxi

¼ 0 on xi ¼ 0 and xi ¼ 1 ð13Þ
for i = 1 for one-dimensional problems and i = 1, 2 for two-dimensional problems.

In our model problems, the material is initially cold and the radiation energy is in the equilibrium with

the material temperature. At the initial time t = 0, the radiation energy is chosen to be E = 10�5 and, thus,

the material temperature is T = E1/4 = 10�5/4.
4. Discretization

4.1. Temporal discretizations

We consider the temporal discretization of the system
oE

ot
¼ CðEÞ ð14Þ
of differential equations, where E is a vector and C is a non-linear vector-valued function. In Section 4.2,

the spatial discretization of the radiation diffusion problem leads to this kind of a system.

We sought E at the times tk, k = 0,1, . . .,M, where tM is some final time. For tks it holds that t0 = 0 and

tk < tk+1. In the following formulas, we denote the length of the time step from tk to tk+1 by Dtk+1. Fur-

thermore, Ek denotes the vector E at the time tk. We will consider several fully implicit time discretizations
which have better stability properties than semi-implicit or explicit discretizations. Typically, for implicit

methods the choice of the length of time steps can be based on accuracy considerations without limits

due to stability.

For (14), the simplest implicit time discretization is the implicit (backward) Euler method defined by
Ekþ1 ¼ Ek þ Dtkþ1CðEkþ1Þ: ð15Þ

Let Dt denote the length of largest time step, that is, Dt = max16 k6MDtk. Then the accuracy of the final

solution EM is OðDtÞ with this scheme when C is a linear operator [27].

A more accurate time discretization is obtained by using the mid-point quadrature rule. This leads to the

mid-point scheme
Ekþ1 ¼ Ek þ Dtkþ1CððEkþ1 þ EkÞ=2Þ: ð16Þ

For a linear C the formula (16) gives a second-order accurate OððDtÞ2Þ final solution EM . Furthermore,

for a linear C this discretization coincides with the Crank–Nicolson scheme which is obtained as the aver-

age of the implicit and explicit Euler methods.

The BDF2 is a popular second-order accurate implicit multistep method. For arbitrary time steps Dtk
and Dtk+1, it is given by
Ekþ1 ¼ ð1þ rkÞEk � rkE
k�1 þ ðDtkþ1 � rkDtkÞCðEkþ1Þ; ð17Þ
where the scalar rk is defined as
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rk ¼
ðDtkþ1Þ2

ðDtkÞ2 þ 2DtkDtkþ1

: ð18Þ
In the case that Dtk and Dtk+1 are equal, rk has the value 1/3 and the backward differentiation formula

(17) simplifies to a more familiar form
Ekþ1 ¼ 4

3
Ek � 1

3
Ek�1 þ 2

3
Dtkþ1CðEkþ1Þ: ð19Þ
Since the BDF2 step requires two previous solutions, the time integration has to be started with some

other method. One possibility is to use the implicit Euler method for the first time step. This is likely to

reduce the accuracy of the solution EM , but the asymptotic second-order accuracy is still maintained.
Another second-order accurate scheme is the two-stage implicit Runge–Kutta method [28] defined by
~E
kþ1 ¼ Ek þ Dtkþ1 ð1� hÞCðEkÞ þ hCð~Ekþ1Þ

� �
; ð20Þ

Ekþ1 ¼ Ek þ Dtkþ1

1

2
CðEkÞ þ 1

2
� h

� �
Cð~Ekþ1Þ þ hCðEkþ1Þ

� �
;

where ~E
kþ1

is an intermediate stage value and h is a constant having the value 1� 1=
ffiffiffi
2

p
.

The implicit Euler method and the Runge–Kutta method are L-stable [27–29] which is a desirable prop-

erty for methods used to integrate parabolic partial differential equations. The mid-point and Crank–Nicol-

son schemes are not L-stable and the solutions computed using these methods can have unphysical

oscillations unless very small time steps are used.
For the time step size selection we use the approach proposed in [3], further analyzed in [7], and used in

[11,14]. The basic idea is to estimate the propagation speed of the dominant wave. An approximation of this

speed is obtained by computing
sk ¼
oEk

ot

����
����
1

rEk
�� ��

1

.
; ð21Þ
where iÆi1 denotes the L1-norm and Ek is the radiation energy at the time tk. The gradient of E is approx-

imated using the central differences in the interior of X and one sided differences on the boundaries oX. The
time derivative of E is approximated using the backward difference in time. The time step is controlled by

defining a desired CFL number. We estimate the current CFL number by
CFLk ¼
Dtk
Dx

sk: ð22Þ
Then the new time step is given by
Dtkþ1 ¼ min
CFL

CFLk
; 1:25

� �
Dtk; ð23Þ
where the factor 1.25 limits the growth rate of the time step. The size of the first time step is chosen to be
Dt1 ¼ CFLDx=10:
4.2. Spatial discretization

We define a grid with a uniform grid step size Dx = 1/(I � 1) to all d directions, where I is the number of

grid points in each direction. In the following, we consider a two-dimensional model problem. One-dimen-

sional and three-dimensional problems can be discretized in the same manner. The grid point (i, j), 1 6 i 6 I,
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1 6 j 6 I, is located at ((i � 1)Dx, (j � 1)D x). Our unknowns are the grid point values and not the cell center

values like in [5]. We denote the value of the radiation energy E and the material temperature T at the grid

point (i, j) by Ei,j and Ti,j, respectively.

Our discretization is based on central finite differences and, thus, the accuracy of the spatial discretiza-

tion is formally second-order accurate with respect to the grid step size Dx. For two-dimensional problems
we obtain a nine point difference scheme for E and a five point scheme for T. Furthermore, these schemes

are coupled due to the equilibration coupling in (5) and (6). A similar discretization was used in [5]. For an

interior grid point (i, j) the difference formula for the diffusion for the radiation energy in (5) reads
r � ðDrðT ;EÞrEÞ � Dr;i;jþ1=2ðEi;jþ1 � Ei;jÞ þ Dr;i�1=2;jðEi�1;j � Ei;jÞ þ Dr;iþ1=2;jðEiþ1;j � Ei;jÞ
�
þDr;i;j�1=2ðEi;j�1 � Ei;jÞ

�
=ðDxÞ2; ð24Þ
where diffusion coefficients are evaluated at the mid points between the grid points. They are given by
Dr;iþa=2;jþb=2 ¼
1

3riþa=2;jþb=2 þ 2Giþa=2;jþb=2=ðEiþa;jþb þ Ei;jÞ
; ð25Þ
where the values of a and b can be �1 or 1 so that the subscript matches one of the subscripts appearing in

(24). Here, the photon absorption cross-section is given by
riþa=2;jþb=2 ¼
zððiþ a=2� 1ÞDx; ðjþ b=2� 1ÞDxÞ

1
2
ðT iþa;jþb þ T i;jÞ

 !3

; ð26Þ
where z(x1,x2) is the function giving the atomic mass number of the medium at the point (x1,x2). Our
approximation for the norm of the gradient reads
Giþa=2;jþb=2 ¼
1

Dx
Eiþa;jþb � Ei;j

� �2 þ 1

16
Eiþb;jþaþb þ Eiþaþb;jþa � Ei�b;j�aþb � Eiþa�b;j�a

� �2	 
1=2
:

The diffusion $ Æ (Dt(T)$T) in the material balance equation (6) is discretized using the scheme (24) with

the coefficients Dr,i+a/2,j+b/2 replaced by
Dt;iþa=2;jþb=2 ¼ k
1

2
ðT iþa;jþb þ T i;jÞ

� �5=2

: ð27Þ
The discrete form of the equilibration coupling term r(T)(T4 � E) in (5) and (6) at the grid point (i, j) is
ri;j T 4
i;j � Ei;j

� �
; ð28Þ
where ri,j is given by (26).

Let us consider the discretization of the diffusion for the radiation energy at the grid points (1, j) on the

boundary x1 = 0. The discretization is performed in the same way for the diffusion for the material temper-
ature and on the other boundaries. We introduce fictitious grid points (0, j) and the associated fictitious val-

ues E0,j. By using the central finite difference for the partial derivative in (10), we obtain the approximation
1

4
E1;j �

1

12r1;jDx
ðE2;j � E0;jÞ ¼ 1: ð29Þ
Solving E0,j from (29) gives us the expression
E0;j ¼ E2;j � 3r1;jDxðE1;j � 4Þ ð30Þ
for the fictitious values. Now, we obtain the discretization on the boundary by using the same difference

scheme (24) for the grid points (1, j) and by replacing the fictitious values in the scheme by the expression

in (30).
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The use of the described spatial discretization leads to the semidiscrete problem (14), where
E ¼
E

T

� �
: ð31Þ
Here, the vectors E and T contain the values of E and T, respectively, at the grid points.
5. GMRES and multigrid preconditioning

In this section for simplicity we denote the Jacobian matrix JðEðjÞÞ by A. We use the GMRES method
[16] with a multigrid preconditioner to solve a system of linear equations
AF ¼ G
for a given vector G. Let the matrix B correspond the action of our multigrid preconditioner. Then, we

solve a left preconditioned system of linear equations
BAF ¼ BG; ð32Þ
with the iterative GMRES method.

The Jacobian matrix has the block form
A ¼
AEE AET

ATE ATT

� �
;

where the first and second block row corresponds to the unknown values of the energy E and the temper-

ature T, respectively, at the grid points.

In the following, we describe the multigrid method corresponding to the preconditioner B. Coarse grids

are obtained by doubling the grid step sizes from one level to the next. We denote the matrix associated to

an interpolation (prolongation) operation for a scalar grid function by P. For one-dimensional, two-dimen-

sional, and three-dimensional problems we use linear, bilinear, and trilinear interpolation operation, respec-
tively. Another possibility would be to use operator dependent interpolation operations like in [21], but our

simpler interpolations already yielded good results in our numerical experiments. The interpolation for a

function pair (E,T) corresponds to the matrix
P ¼
P 0

0 P

� �
:

We employ the full weighting restriction operator [18]. Thus, the restriction of a vector R is given by
Rc ¼ 1

2d
PTR;
where d is the dimension of the problem. The operators for the coarser grids are obtained using the Galer-
kin coarsening [18]. Thus, the matrix corresponding to the next coarser grid is given by
Ac ¼ PTAP:
In our multigrid we smooth grid functions by performing a few Gauss–Seidel iterations. For this the un-

knowns are ordered in such a way that the grid point value of T follows the value of E at the same grid

point. Thus, this is not the block ordering used for other operations. Now we have considered all details

of our multigrid method and we can introduce Algorithm 1.
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Algorithm 1. (A recursive multigrid method)

Multigrid ðA;F;GÞ
If the size of A is small then solve AF ¼ G and return

Smooth F with a few Gauss–Seidel sweeps
Compute residual R ¼ AF� G
Compute restriction Rc ¼ 1

2d P
TR

Compute Galerkin coarsening Ac ¼ PTAP
Set Fc ¼ 0

Call MultigridðAc;Fc;GcÞ
Compute interpolation R ¼ PFc

Set F ¼ F�R
Smooth F with a few Gauss–Seidel sweeps
An alternative way to construct coarse grid operators is to restrict EðjÞ to coarsers grids and then form

the Jacobian matrices for the coarsers grids. We have also made numerical experiments with this approach.

In these experiments, which are not reported in this article, the convergence of the GMRES methods was

almost as fast as with the Galerkin coarsening.
6. Numerical results

In all numerical experiments we have performed time integration for three time units. We have used two

presmooth Gauss–Seidel iterations and two postsmooth Gauss–Seidel iterations in Algorithm 1. Unless

otherwise stated the stopping criterion in Newton�s method has been the l2-norm of the residual of (1) is

less than 10�4 and in the GMRES method it has been the l2-norm of the residual of (32) is reduced by

the factor of 10�4. According to several test runs these conditions seem to be sufficient to reduce the error
due to the termination of iterations well below the discretization error for all discretizations used in the

experiments. For coarser discretizations less strict criteria would have been sufficient to accomplish the

same, but for uniformity and simplicity we have used the same criteria for all discretizations.
6.1. One-dimensional test problem

Our first numerical experiments are performed with one-dimensional problems having the atomic mass

number z = 1 in the whole interval (0,1). We start by studying the convergence of different time discretiza-
tions when the coefficient k in the material energy balance equation (6) is zero. For this purpose, we define

the L2 error of the material temperature T to be
1

2
T 1 � T ðrÞ

1

� �2
Dxþ

XI�1

i¼2

T i � T ðrÞ
i

� �2
Dxþ 1

2
T I � T ðrÞ

I

� �2
Dx

" #1=2
; ð33Þ
where T ðrÞ
1 is the reference solution. Fig. 1 shows the time convergence of the L2 error at the final time t = 3

for the discretizations when the grid step is Dx = 1/128. The reference solution has been computed with

CFL = 0.001, the same grid step size, and using 10�7 instead of 10�4 in the stopping criteria for both iter-
ations. In Fig. 1, IE denotes the implicit Euler method, MP denotes the mid-point scheme, IRK denotes the

two-stage implicit Runge–Kutta method, and BDF denotes the two-step backward differentiation formula.

The implicit Euler method approaches first-order convergence with respect to the time step size when the

CFL number is decreased. The convergence rate of the Runge–Kutta method varies slightly with the
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Fig. 1. The time convergence of different time discretizations for the one-dimensional problem with Dx = 1/128.
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average rate being second-order over the considered CFL range. The BDF is second-order accurate once

CFL is less than 0.4 and the mid-point scheme seems to be second-order when CFL is less than 0.1. When

the CFL number is 0.1 the L2 error of the mid-point scheme coincides quite well with the L2 error reported

for the Crank–Nicolson method in [14]. When the CFL number was one or larger the mid-point scheme led

to a negative value of energy at some point of space and time and the simulation failed due to this. This and

the need to have CFL number less than 0.1 to obtain second-order convergence rate are probably due to the

lack of L-stability of the mid-point scheme.
Next, we study the space–time convergence of the discretizations. For this comparison the reference

solution is computed using Dx = 1/2048 and the mid-point scheme with CFL = 0.05. We have used the

straight injection of the reference solution to the coarser grid when computing the L2 error defined by

(33). Fig. 2 shows the L2 error for the different time discretizations and for three grid step sizes: Dx =

1/32, Dx = 1/128, and Dx = 1/512. With the implicit Euler method it is necessary to decrease the CFL
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Fig. 2. The convergence of different time discretizations for one-dimensional problems with Dx = 1/32 (top), Dx = 1/128, and Dx =

1/512 (bottom).
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number when the grid is refined in order to obtain smallest possible error. This is a consequence of the first-

order convergence of the implicit Euler method. For other methods a constant CFL number is sufficient to

obtain smallest possible error. Interestingly the largest used CFL number leads to the smallest error for

other methods. With the mid-point scheme and CFL = 0.1 the errors for Dx = 1/128 and Dx = 1/512 are

about 3.40 · 10�2 and 9.26 · 10�3, respectively. The ratio of these is about 3.67 which suggest that the con-
vergence of the space discretization could be first-order. This is a typical convergence rate for grid point

value based discretizations when the solution is non-smooth at the scale defined by the grid. Similar con-

vergence rates were observed also in [13,14].

Fig. 3 shows the material temperature T at the final time t = 3 computed using three different grids and

the mid-point scheme with CFL = 0.8. The temperature distributions are in good agreement with the plots

of T for the one-dimensional problem shown in [5].

Table 1 reports the convergence of the Newton iterations and the preconditioned inner GMRES itera-

tions. In Table 1, we report results for the values 0 and 0.1 for the coefficient k in (6). A smaller CFL num-
ber, that is, a smaller time step makes both iterations converge faster. Also, the iterations converge faster

with a larger coefficient k. The number of preconditioned GMRES iterations is rather insensitive to the grid

step size which makes the preconditioner scalable.
Fig. 3. The material temperature T after three time units computed using three different grid step sizes Dx, the mid-point scheme, and

CFL = 0.8.

Table 1

The convergence of iterative methods for one-dimensional problems

k CFL Dx = 1/64 Dx = 1/128 Dx = 1/256

Newton it./time

step

GMRES it./

Newton it.

Newton it./time

step

GMRES it./

Newton it.

Newton it./time

step

GMRES it./

Newton it.

0.0 0.8 4.32 2.66 4.40 2.88 4.35 2.93

0.0 0.4 3.23 1.97 3.23 1.98 2.98 1.98

0.0 0.2 2.52 1.96 2.40 1.98 2.15 1.98

0.0 0.1 1.95 1.92 1.98 1.92 1.99 1.86

0.1 0.8 3.63 2.16 3.60 2.21 3.19 2.27

0.1 0.4 2.82 1.94 2.85 1.96 2.34 1.98

0.1 0.2 2.07 1.91 1.99 1.93 1.98 1.97

0.1 0.1 1.95 1.70 1.98 1.79 1.32 1.90
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A similar convergence study has been performed in [5]. It is difficult to compare their results to ours,

since their discretizations and stopping criteria for iterations are different. The Newton iteration counts re-

ported in [5] are slightly larger, but their stopping criterion for Newton�s method is also slightly more strict.

Thus, the convergence of Newton�s method seems to be comparable in here and [5]. The stopping criteria

for the GMRES method are quite different and due to this we do not compare the convergence of the pre-
conditioner GMRES methods.

6.2. Two-dimensional test problem with z = 1

The first two-dimensional test problem is a trivial extension of the previous one-dimensional problem.

The boundary conditions were described in Section 3. The exact solution is obtained from the solution

of the one-dimensional problem by setting it to be constant in the x2-direction.

We have only used the mid-point scheme for the time discretization for the two-dimensional problems.
The L2 error of the solution has been defined analogously to the L2 error in (33) for one-dimensional prob-

lems. According to our experiments at the final time t = 3 the L2 errors of the solutions of the two-dimen-

sional problems coincides with three or four decimals to the L2 errors of the solutions of the corresponding

one-dimensional problems.

The convergence of Newton�s method and the preconditioned GMRES method are reported in Table 2.

These experiments are the same ones as with the one-dimensional problem. The behavior is very similar

with the only difference being a slight growth in the number of iterations. Thus, the same conclusions as

in the case of the one-dimensional problems are also valid for this problem.
For a comparison we also reported in Table 3 the average number of iterations when we do not have a

preconditioner. Furthermore, in Table 4 we have given the iteration counts when the finite difference

approximation (4) of the Jacobian is used. According to [5], we have chosen the finite difference length

to be
Table 2

The convergence of iterative methods for two-dimensional problems with z = 1

k CFL Dx = 1/64 Dx = 1/128 Dx = 1/256

Newton it./time

step

GMRES it./

Newton it.

Newton it./time

step

GMRES it./

Newton it.

Newton it./time

step

GMRES it./

Newton it.

0.0 0.8 4.62 3.08 4.87 3.17 4.71 3.30

0.0 0.4 3.71 2.51 3.69 2.36 3.53 2.24

0.0 0.2 2.91 1.95 2.94 1.97 2.93 1.98

0.0 0.1 2.15 1.95 2.00 1.97 2.00 1.98

0.1 0.8 3.86 2.81 3.86 2.80 3.80 2.65

0.1 0.4 3.08 2.08 2.97 1.97 2.97 1.98

0.1 0.2 2.86 1.94 2.40 1.94 2.10 1.96

0.1 0.1 1.98 1.80 1.99 1.86 2.00 1.94

Table 3

The convergence of iterative methods without a preconditioner for two-dimensional problems with z = 1

k CFL Dx = 1/64 Dx = 1/128 Dx = 1/256

Newton it./time

step

GMRES it./

Newton it.

Newton it./time

step

GMRES it./

Newton it.

Newton it./time

step

GMRES it./

Newton it.

0.0 0.8 4.62 43.24 4.88 65.12 4.71 96.14

0.0 0.4 3.71 29.25 3.69 43.16 3.53 63.06

0.0 0.2 2.91 19.13 2.94 27.64 2.93 40.58

0.0 0.1 2.14 12.75 2.00 17.80 2.00 25.84



Table 4

The convergence of Jacobian-free iterative methods without a preconditioner for two-dimensional problems with z = 1

k CFL Dx = 1/64 Dx = 1/128 Dx = 1/256

Newton it./time

step

GMRES it./

Newton it.

Newton it./time

step

GMRES it./

Newton it.

Newton it./time

step

GMRES it./

Newton it.

0.0 0.8 4.62 26.62 4.88 36.20 4.71 53.96

0.0 0.4 3.71 19.69 3.69 25.16 3.53 36.62

0.0 0.2 2.91 13.96 2.94 16.96 2.93 24.42

0.0 0.1 2.14 9.74 2.00 11.34 2.00 15.99

Table

The co

CFL

0.4

0.2

0.1
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� ¼ 5� 10�8kEk1
NkFk2

;

where iÆi1 and iÆi2 denote the l1 and l2 vector norms, respectively, and N = 2I2 is the length of the vectors.
With the finite difference approximation of the Jacobian we cannot use the proposed multigrid precondi-

tioner, because it requires the Jacobian matrix.

The use of the multigrid preconditioner or the finite difference approximation of the Jacobian does not

have essential effect to the number of Newton iterations. The number of GMRES iterations is from 6 to 30

times larger without a preconditioner. When the mesh step size is halved the number of GMRES iterations

grows roughly by the factor of 1.5 when no preconditioner is used while with the preconditioner there is no

growth or it is very mild. For this test problem, the finite difference approximation of the Jacobian leads to

better conditioned systems of linear equations.

6.3. Two-dimensional test problem with jump in z

In the second two-dimensional problem the atomic mass number is given by
z ¼
10; x 2 ½1=3; 2=3� � ½1=3; 2=3�;
1; otherwise

�

and k = 0.01 is the diffusion coefficient in the material energy balance equation. In order to improve the

accuracy of the discretization we make grid lines to coincide with the lines x1 = 1/3, x1 = 2/3, x2 = 1/3,

and x2 = 2/3. This is accomplished by choosing the number of grid points in both directions to be multiple

of three plus one.

Table 5 reports the convergence of Newton�s method and the preconditioned GMRES method. New-

ton�s method takes slightly less iterations when there is a jump in z. This is probably due to the stopping
criterion which requires the norm of the residual to be less than 10�4. The larger value of z in part of the

domain makes the diffusion of the radiation energy smaller and also the residual. The preconditioned

GMRES method requires more iterations in this problem, but the number of iterations is still small.
5

nvergence of iterative methods for two-dimensional problems with a jump in z

Dx = 1/96 Dx = 1/192 Dx = 1/384

Newton it./time

step

GMRES it./

Newton it.

Newton it./time

step

GMRES it./

Newton it.

Newton it./time

step

GMRES it./

Newton it.

4.01 6.79 3.74 5.21 3.58 4.06

3.24 5.85 2.98 4.28 2.94 3.43

2.54 4.93 2.39 3.79 2.04 2.89
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The reason for the larger number of iterations is that the standard multigrid is not so effective when there is

a jump in coefficients. An interesting property of this problem is that the number of both iterations decrease

as the grid is made finer. This same behavior was also observed in [5]. The convergence of the precondi-

tioned GMRES is rather good even though the coefficients have very large jumps in this problem.

Tables 6 and 7 give the average iteration counts for the two coarser discretizations without a precondi-
tioner and with the finite difference approximation (4) of the Jacobian, respectively. The finite difference

length is the same as in Section 6.2. Again the number of Newton iterations is essentially the same for three

different versions. Unlike for z = 1 now the number of GMRES iterations are about same when the Jaco-

bian matrix is computed or its finite difference approximation is used. The number of GMRES iterations is

from 15 to 34 times larger without a preconditioner. Thus, the impact of the multigrid preconditioner to the

efficiency much greater when there is a jump in the atomic mass number z.

Table 8 studies the accuracy of the discretizations. We use the solution computed using the finest grid

and smallest time steps as a reference solution, since we cannot compute more accurate reference solution
with a reasonable amount of time. Table 8 suggests that the convergence of the space discretization could be

first-order, since the difference is approximately halved when we move to the right in Table 8. Based on the

last column the convergence of the mid-point time discretization seems to be second-order. Fig. 4 shows

contour lines of the material temperature at the final time t = 3 computed using the finest grid.
Table 6

The convergence of iterative methods without a preconditioner for two-dimensional problems with a jump in z

CFL Dx = 1/96 D x = 1/192

Newton it./time step GMRES it./Newton it. Newton it./time step GMRES it./Newton it.

0.4 4.00 112.00 3.74 176.11

0.2 3.25 89.55 2.98 129.94

0.1 2.54 78.50 2.39 116.14

Table 7

The convergence of Jacobian-free iterative methods without a preconditioner for two-dimensional problems with a jump in z

CFL Dx = 1/96 D x = 1/192

Newton it./time step GMRES it./Newton it. Newton it./time step GMRES it./Newton it.

0.4 4.01 113.17 3.74 177.25

0.2 3.25 90.50 2.98 131.02

0.1 2.54 79.24 2.39 116.84

Table 8

The L2 differences between a given material temperature and the material temperature computed with Dx = 1/384 and CFL = 0.1

CFL Dx = 1/48 Dx = 1/96 Dx = 1/192 Dx = 1/384

0.4 6.44 · 10�2 3.17 · 10�2 1.19 · 10�2 2.63 · 10�4

0.2 6.46 · 10�2 3.20 · 10�2 1.21 · 10�2 6.56 · 10�5

0.1 6.49 · 10�2 3.21 · 10�2 1.22 · 10�2 0



Fig. 4. Contour lines corresponding the material temperatures T = 0.1, 0.2, . . . , 1.2 computed using the 385 · 385 grid.
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7. Conclusions

For Newton�s method we computed the Jacobian matrix using automatic differentiation which was

implemented using the operator overloading in Fortran 90. This required only a slight modification to

the computation of the non-linear residual while hand coding this same computation would have been quite

laborious. For the iterative solution of systems of linear equations with the Jacobian matrix we introduced

a simple multigrid preconditioner. Many of the earlier preconditioners for non-equilibrium radiation diffu-

sion problems have used some physics based knowledge while the multigrid preconditioner does not use
such information and, thus, it is more general. Based on numerical experiments the convergence of

GMRES iterations with the multigrid preconditioner seems to be comparable to the convergence with

the operator splitting preconditioner introduced in [5].

The implicit mid-point scheme leads often to negative radiation energy or material temperature with

large time steps corresponding to a CFL number close to one. With the implicit Euler method, the

BDF2 and a two-stage implicit Runge–Kutta method it is possible to use larger time steps without encoun-

tering negative values. With the second-order methods the accuracy of the solution does not improve when

the CFL number is reduced from the value around one. This suggests that the spatial discretization error
dominates the temporal discretization error when the CFL number is about one or less.

A more systematic comparison of the accuracy of different discretizations and the efficiency of different

solvers would be useful future research topic. A more advanced multigrid preconditioner using possibly

special smoothers and matrix-dependent prolongations/restrictions might increase efficiency. This could

be especially true for problems with larger jumps in coefficients and when larger time steps are used.

One obvious way to improve the efficiency would be to consider the local refinements of grids/meshes like

it has been done for equilibrium radiation diffusion problems in [10,12].
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Appendix A. Example of automatic differentiation

The following Fortran 90 subroutine Code 1 computes the residual for the one-dimensional equilibrium
radiation diffusion problem. The code has been augmented with the computation of the Jacobian matrix

using automatic differentiation based on the operator overloading. User supplies to the routine the number

of unknowns (grid points) n, the grid step size dx and the vector e containing the radiation energy at grid

points. The routine returns the residual vector r and the tridiagonal Jacobian matrix j.

Code 1 computes the residual by going through the grid points in a loop. The vector ed contains the

radiation energy for the grid point under consideration and the grid points left and right from it. For

the Jacobian computation the vector ed contains the independent variables. Here, the independent vari-

ables mean the variables with respect to which the derivatives are computed.
The new data type containing also the derivative information is dreal and it is shown in Code 2. The

following modifications have been made to the code in order to compute the Jacobian: (1) the types of the

variables ed, re and the functions sigma, diff have been defined to be the new data type, (2) the inde-

pendent variable is initialized using the function adindep, (3) one row of the Jacobian is extracted from

re using the function adder.

Code 1. An automatic differentiation example

!Subroutine for computing the residual vector and

!the Jacobian matrix.Parameters:

!

! n the number of grid points (input)

! dx the grid step size (input)

! e the grid point values of radiation energy (input)

! r the residual vector (output)

! j the tridiagonal Jacobian matrix (output)

!

subroutine resjac(n,dx,e,r,j)
use ad

integer, intent(in)::n

real(wp), intent(in)::dx, e(n)

real(wp), intent(out)::r(n), j(-1:1,n)

!

real(wp)::el(3) !three local values

type(dreal)::ed(3) !three local values and their derivatives

type(dreal)::re !one component of residual and its derivatives
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type(dreal), external::sigma, diff

integer::i

!

!Go through the grid points from left to right

do i=1,n

!Copy the values of energy at the grid points

!i-1, i, and i+1 to el

el=0.d0

if (i > 1) el(1)=e(i-1)

el(2)=e(i)

if (i < n) el(3)=e(i+1)

!

!Copy the local values from el to ed and define that we

!want the derivatives with respect to the components of el

ed=adindep(el)

!

!On the left boundary compute the value of the fictitious

!grid point outside the interval using the Robin b.c.

if (i==1) ed(1)=ed(3) - 3.d0*sigma(ed(2))*dx*(ed(2) - 4.d0)

!

!On the right boundary compute the value of the fictitious

!grid point outside the interval using the Robin b.c.

if (i==n) ed(3)=ed(1) - 3.d0*sigma(ed(2))*dx*ed(2)

!

!Compute the residual at the ith grid point

re=diff(ed(2),ed(3),dx)*(ed(3) - ed(2))/(dx**2) &
- diff(ed(1),ed(2),dx)*(ed(2) - ed(1))/(dx**2)

!

!Copy the residual at the ith grid point to re

r(i)=re

!Copy the derivatives to the ith row of the Jacobian matrix

j(-1:1,i)=adder(re)

end do

end subroutine resjac
Code 2 gives a part of module containing the definitions needed for the automatic differentiation. The

new data type dreal contains a vector whose first component contains the value of the variable and others
contain the derivatives with respect to the independent variables. We have shown how the multiplication

operation is performed with the new data type. In the same manner all other elementary operations and

functions can be defined for the data type dreal. Also, the functions for initializing the independent vari-

ables (adindep) and for returning the derivative information (adders) are given.
Code 2. A part of automatic differentiation module

module ad
integer, parameter::wp=selected_real_kind(12)



372 R. Glowinski, J. Toivanen / Journal of Computational Physics 207 (2005) 354–374
!

!nmx is the maximum number of independent variables

integer, parameter::nmx=16

!

type dreal

!r is array containing the value of variable r(0) and the

!derivatives r(1:n) with respect to the independent variables

real(wp)::r(0:nmx)

!n is the number of independent variables

integer::n

end type dreal

!Defines the multiplication to use the function mulss

!for the product of two dreals

interface operator (*)
module procedure mulss
..
.

!Function for performing the multiplication of two dreals

function mulss(a,b) result(c)
type(dreal), intent(in)::a, b

type(dreal)::c

!

!Compute the result c%r(0) of multiplication

c%r(0)=a%r(0)*b%r(0)

!Compute the derivatives c%r(1:c%n) using the product rule

c%r(1:c%n)=a%r(1:a%n)*b%r(0)+a%r(0)*b%r(1:b%n)

end function mulss

!Function for defining the values and independent variables

!in dreal array

function adindep(a) result(c)
real(wp), intent(in)::a(:)

type(dreal)::c(size(a))

!

!Copy the values

c%r(0)=a

!Set the number of independent variables

c%n=size(a)

!Initialize the derivatives with respect to the independent

!variables.The derivative of the ith variable is one

!with respect to the ith independent variables and all

!other derivatives are zero

do i=1,c%n

c(i)%r(1:c%n)=0.d0

c(i)%r(i)=1.d0

end do

end function adindep
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!Function for returning the derivatives from dreal

function adder(a) result(c)

type(dreal), intent(in)::a

real(wp)::c(a%n)

!

!Copy the derivatives from r(1:a%n)

c=a%r(1:a%n)

end function adder

end module ad
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